Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives (2405.05562v3)

Published 9 May 2024 in cs.IR

Abstract: Recommender systems play a pivotal role in helping users navigate an overwhelming selection of products and services. On online platforms, users have the opportunity to share feedback in various modes, including numerical ratings, textual reviews, and likes/dislikes. Traditional recommendation systems rely on users explicit ratings or implicit interactions (e.g. likes, clicks, shares, saves) to learn user preferences and item characteristics. Beyond these numerical ratings, textual reviews provide insights into users fine-grained preferences and item features. Analyzing these reviews is crucial for enhancing the performance and interpretability of personalized recommendation results. In recent years, review-based recommender systems have emerged as a significant sub-field in this domain. In this paper, we provide a comprehensive overview of the developments in review-based recommender systems over recent years, highlighting the importance of reviews in recommender systems, as well as the challenges associated with extracting features from reviews and integrating them into ratings. Specifically, we present a categorization of these systems and summarize the state-of-the-art methods, analyzing their unique features, effectiveness, and limitations. Finally, we propose potential directions for future research, including the integration of multimodal data, multi-criteria rating information, and ethical considerations.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.