Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Recommendations by Concise User Profiles from Review Text (2311.01314v3)

Published 2 Nov 2023 in cs.IR

Abstract: Recommender systems perform well for popular items and users with ample interactions (likes, ratings etc.). This work addresses the difficult and underexplored case of users who have very sparse interactions but post informative review texts. This setting naturally calls for encoding user-specific text with LLMs (LLM). However, feeding the full text of all reviews through an LLM has a weak signal-to-noise ratio and incurs high costs of processed tokens. This paper addresses these two issues. It presents a light-weight framework, called CUP, which first computes concise user profiles and feeds only these into the training of transformer-based recommenders. For user profiles, we devise various techniques to select the most informative cues from noisy reviews. Experiments, with book reviews data, show that fine-tuning a small LLM with judiciously constructed profiles achieves the best performance, even in comparison to LLM-generated rankings.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.