Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Joint Framework Towards Class-aware and Class-agnostic Alignment for Few-shot Segmentation (2211.01310v1)

Published 2 Nov 2022 in cs.CV

Abstract: Few-shot segmentation (FSS) aims to segment objects of unseen classes given only a few annotated support images. Most existing methods simply stitch query features with independent support prototypes and segment the query image by feeding the mixed features to a decoder. Although significant improvements have been achieved, existing methods are still face class biases due to class variants and background confusion. In this paper, we propose a joint framework that combines more valuable class-aware and class-agnostic alignment guidance to facilitate the segmentation. Specifically, we design a hybrid alignment module which establishes multi-scale query-support correspondences to mine the most relevant class-aware information for each query image from the corresponding support features. In addition, we explore utilizing base-classes knowledge to generate class-agnostic prior mask which makes a distinction between real background and foreground by highlighting all object regions, especially those of unseen classes. By jointly aggregating class-aware and class-agnostic alignment guidance, better segmentation performances are obtained on query images. Extensive experiments on PASCAL-$5i$ and COCO-$20i$ datasets demonstrate that our proposed joint framework performs better, especially on the 1-shot setting.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.