Papers
Topics
Authors
Recent
2000 character limit reached

Masked Cross-image Encoding for Few-shot Segmentation (2308.11201v1)

Published 22 Aug 2023 in cs.CV

Abstract: Few-shot segmentation (FSS) is a dense prediction task that aims to infer the pixel-wise labels of unseen classes using only a limited number of annotated images. The key challenge in FSS is to classify the labels of query pixels using class prototypes learned from the few labeled support exemplars. Prior approaches to FSS have typically focused on learning class-wise descriptors independently from support images, thereby ignoring the rich contextual information and mutual dependencies among support-query features. To address this limitation, we propose a joint learning method termed Masked Cross-Image Encoding (MCE), which is designed to capture common visual properties that describe object details and to learn bidirectional inter-image dependencies that enhance feature interaction. MCE is more than a visual representation enrichment module; it also considers cross-image mutual dependencies and implicit guidance. Experiments on FSS benchmarks PASCAL-$5i$ and COCO-$20i$ demonstrate the advanced meta-learning ability of the proposed method.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.