Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An ensemble deep learning technique for detecting suicidal ideation from posts in social media platforms (2112.10609v1)

Published 17 Dec 2021 in cs.IR, cs.CL, cs.LG, and cs.SI

Abstract: Suicidal ideation detection from social media is an evolving research with great challenges. Many of the people who have the tendency to suicide share their thoughts and opinions through social media platforms. As part of many researches it is observed that the publicly available posts from social media contain valuable criteria to effectively detect individuals with suicidal thoughts. The most difficult part to prevent suicide is to detect and understand the complex risk factors and warning signs that may lead to suicide. This can be achieved by identifying the sudden changes in a user behavior automatically. Natural language processing techniques can be used to collect behavioral and textual features from social media interactions and these features can be passed to a specially designed framework to detect anomalies in human interactions that are indicators of suicidal intentions. We can achieve fast detection of suicidal ideation using deep learning and/or machine learning based classification approaches. For such a purpose, we can employ the combination of LSTM and CNN models to detect such emotions from posts of the users. In order to improve the accuracy, some approaches like using more data for training, using attention model to improve the efficiency of existing models etc. could be done. This paper proposes a LSTM-Attention-CNN combined model to analyze social media submissions to detect any underlying suicidal intentions. During evaluations, the proposed model demonstrated an accuracy of 90.3 percent and an F1-score of 92.6 percent, which is greater than the baseline models.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.