Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Suicidal Ideation Detection on Social Media: A Review of Machine Learning Methods (2201.10515v1)

Published 25 Jan 2022 in cs.CL

Abstract: Social media platforms have transformed traditional communication methods by allowing users worldwide to communicate instantly, openly, and frequently. People use social media to express their opinion and share their personal stories and struggles. Negative feelings that express hardship, thoughts of death, and self-harm are widespread in social media, especially among young generations. Therefore, using social media to detect and identify suicidal ideation will help provide proper intervention that will eventually dissuade others from self-harming and committing suicide and prevent the spread of suicidal ideations on social media. Many studies have been carried out to identify suicidal ideation and behaviors in social media. This paper presents a comprehensive summary of current research efforts to detect suicidal ideation using machine learning algorithms on social media. This review 24 studies investigating the feasibility of social media usage for suicidal ideation detection is intended to facilitate further research in the field and will be a beneficial resource for researchers engaged in suicidal text classification.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.