Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Quantitative and Qualitative Analysis of Suicide Ideation Detection using Deep Learning (2206.08673v1)

Published 17 Jun 2022 in cs.CL

Abstract: For preventing youth suicide, social media platforms have received much attention from researchers. A few researches apply machine learning, or deep learning-based text classification approaches to classify social media posts containing suicidality risk. This paper replicated competitive social media-based suicidality detection/prediction models. We evaluated the feasibility of detecting suicidal ideation using multiple datasets and different state-of-the-art deep learning models, RNN-, CNN-, and Attention-based models. Using two suicidality evaluation datasets, we evaluated 28 combinations of 7 input embeddings with 4 commonly used deep learning models and 5 pretrained LLMs in quantitative and qualitative ways. Our replication study confirms that deep learning works well for social media-based suicidality detection in general, but it highly depends on the dataset's quality.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.