Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Scalable Vector Gaussian Information Bottleneck (2102.07525v1)

Published 15 Feb 2021 in cs.IT, cs.LG, and math.IT

Abstract: In the context of statistical learning, the Information Bottleneck method seeks a right balance between accuracy and generalization capability through a suitable tradeoff between compression complexity, measured by minimum description length, and distortion evaluated under logarithmic loss measure. In this paper, we study a variation of the problem, called scalable information bottleneck, in which the encoder outputs multiple descriptions of the observation with increasingly richer features. The model, which is of successive-refinement type with degraded side information streams at the decoders, is motivated by some application scenarios that require varying levels of accuracy depending on the allowed (or targeted) level of complexity. We establish an analytic characterization of the optimal relevance-complexity region for vector Gaussian sources. Then, we derive a variational inference type algorithm for general sources with unknown distribution; and show means of parametrizing it using neural networks. Finally, we provide experimental results on the MNIST dataset which illustrate that the proposed method generalizes better to unseen data during the training phase.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.