Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Relevance-Complexity Region of Scalable Information Bottleneck (2011.01352v1)

Published 2 Nov 2020 in cs.IT, cs.LG, and math.IT

Abstract: The Information Bottleneck method is a learning technique that seeks a right balance between accuracy and generalization capability through a suitable tradeoff between compression complexity, measured by minimum description length, and distortion evaluated under logarithmic loss measure. In this paper, we study a variation of the problem, called scalable information bottleneck, where the encoder outputs multiple descriptions of the observation with increasingly richer features. The problem at hand is motivated by some application scenarios that require varying levels of accuracy depending on the allowed level of generalization. First, we establish explicit (analytic) characterizations of the relevance-complexity region for memoryless Gaussian sources and memoryless binary sources. Then, we derive a Blahut-Arimoto type algorithm that allows us to compute (an approximation of) the region for general discrete sources. Finally, an application example in the pattern classification problem is provided along with numerical results.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.