Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Information Bottleneck Method for Discrete and Gaussian Sources (1709.09082v3)

Published 26 Sep 2017 in cs.IT and math.IT

Abstract: We study the problem of distributed information bottleneck, in which multiple encoders separately compress their observations in a manner such that, collectively, the compressed signals preserve as much information as possible about another signal. The model generalizes Tishby's centralized information bottleneck method to the setting of multiple distributed encoders. We establish single-letter characterizations of the information-rate region of this problem for both i) a class of discrete memoryless sources and ii) memoryless vector Gaussian sources. Furthermore, assuming a sum constraint on rate or complexity, for both models we develop Blahut-Arimoto type iterative algorithms that allow to compute optimal information-rate trade-offs, by iterating over a set of self-consistent equations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Inaki Estella Aguerri (15 papers)
  2. Abdellatif Zaidi (55 papers)
Citations (47)

Summary

We haven't generated a summary for this paper yet.