Papers
Topics
Authors
Recent
2000 character limit reached

LTL2Action: Generalizing LTL Instructions for Multi-Task RL (2102.06858v3)

Published 13 Feb 2021 in cs.AI, cs.LG, and cs.RO

Abstract: We address the problem of teaching a deep reinforcement learning (RL) agent to follow instructions in multi-task environments. Instructions are expressed in a well-known formal language -- linear temporal logic (LTL) -- and can specify a diversity of complex, temporally extended behaviours, including conditionals and alternative realizations. Our proposed learning approach exploits the compositional syntax and the semantics of LTL, enabling our RL agent to learn task-conditioned policies that generalize to new instructions, not observed during training. To reduce the overhead of learning LTL semantics, we introduce an environment-agnostic LTL pretraining scheme which improves sample-efficiency in downstream environments. Experiments on discrete and continuous domains target combinatorial task sets of up to $\sim10{39}$ unique tasks and demonstrate the strength of our approach in learning to solve (unseen) tasks, given LTL instructions.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.