Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Reinforcement Learning of Action and Query Policies with LTL Instructions under Uncertain Event Detector (2309.02722v1)

Published 6 Sep 2023 in cs.RO

Abstract: Reinforcement learning (RL) with linear temporal logic (LTL) objectives can allow robots to carry out symbolic event plans in unknown environments. Most existing methods assume that the event detector can accurately map environmental states to symbolic events; however, uncertainty is inevitable for real-world event detectors. Such uncertainty in an event detector generates multiple branching possibilities on LTL instructions, confusing action decisions. Moreover, the queries to the uncertain event detector, necessary for the task's progress, may increase the uncertainty further. To cope with those issues, we propose an RL framework, Learning Action and Query over Belief LTL (LAQBL), to learn an agent that can consider the diversity of LTL instructions due to uncertain event detection while avoiding task failure due to the unnecessary event-detection query. Our framework simultaneously learns 1) an embedding of belief LTL, which is multiple branching possibilities on LTL instructions using a graph neural network, 2) an action policy, and 3) a query policy which decides whether or not to query for the event detector. Simulations in a 2D grid world and image-input robotic inspection environments show that our method successfully learns actions to follow LTL instructions even with uncertain event detectors.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.