Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

S-SGD: Symmetrical Stochastic Gradient Descent with Weight Noise Injection for Reaching Flat Minima (2009.02479v1)

Published 5 Sep 2020 in cs.LG and stat.ML

Abstract: The stochastic gradient descent (SGD) method is most widely used for deep neural network (DNN) training. However, the method does not always converge to a flat minimum of the loss surface that can demonstrate high generalization capability. Weight noise injection has been extensively studied for finding flat minima using the SGD method. We devise a new weight-noise injection-based SGD method that adds symmetrical noises to the DNN weights. The training with symmetrical noise evaluates the loss surface at two adjacent points, by which convergence to sharp minima can be avoided. Fixed-magnitude symmetric noises are added to minimize training instability. The proposed method is compared with the conventional SGD method and previous weight-noise injection algorithms using convolutional neural networks for image classification. Particularly, performance improvements in large batch training are demonstrated. This method shows superior performance compared with conventional SGD and weight-noise injection methods regardless of the batch-size and learning rate scheduling algorithms.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.