Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Gradient Noise Convolution (GNC): Smoothing Loss Function for Distributed Large-Batch SGD (1906.10822v1)

Published 26 Jun 2019 in cs.LG and stat.ML

Abstract: Large-batch stochastic gradient descent (SGD) is widely used for training in distributed deep learning because of its training-time efficiency, however, extremely large-batch SGD leads to poor generalization and easily converges to sharp minima, which prevents naive large-scale data-parallel SGD (DP-SGD) from converging to good minima. To overcome this difficulty, we propose gradient noise convolution (GNC), which effectively smooths sharper minima of the loss function. For DP-SGD, GNC utilizes so-called gradient noise, which is induced by stochastic gradient variation and convolved to the loss function as a smoothing effect. GNC computation can be performed by simply computing the stochastic gradient on each parallel worker and merging them, and is therefore extremely easy to implement. Due to convolving with the gradient noise, which tends to spread along a sharper direction of the loss function, GNC can effectively smooth sharp minima and achieve better generalization, whereas isotropic random noise cannot. We empirically show this effect by comparing GNC with isotropic random noise, and show that it achieves state-of-the-art generalization performance for large-scale deep neural network optimization.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.