Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Accelerated learning algorithms of general fuzzy min-max neural network using a novel hyperbox selection rule (2003.11333v2)

Published 25 Mar 2020 in cs.LG and stat.ML

Abstract: This paper proposes a method to accelerate the training process of a general fuzzy min-max neural network. The purpose is to reduce the unsuitable hyperboxes selected as the potential candidates of the expansion step of existing hyperboxes to cover a new input pattern in the online learning algorithms or candidates of the hyperbox aggregation process in the agglomerative learning algorithms. Our proposed approach is based on the mathematical formulas to form a branch-and-bound solution aiming to remove the hyperboxes which are certain not to satisfy expansion or aggregation conditions, and in turn, decreasing the training time of learning algorithms. The efficiency of the proposed method is assessed over a number of widely used data sets. The experimental results indicated the significant decrease in training time of the proposed approach for both online and agglomerative learning algorithms. Notably, the training time of the online learning algorithms is reduced from 1.2 to 12 times when using the proposed method, while the agglomerative learning algorithms are accelerated from 7 to 37 times on average.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.