Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Hyperbox based machine learning algorithms: A comprehensive survey (1901.11303v3)

Published 31 Jan 2019 in cs.LG and stat.ML

Abstract: With the rapid development of digital information, the data volume generated by humans and machines is growing exponentially. Along with this trend, machine learning algorithms have been formed and evolved continuously to discover new information and knowledge from different data sources. Learning algorithms using hyperboxes as fundamental representational and building blocks are a branch of machine learning methods. These algorithms have enormous potential for high scalability and online adaptation of predictors built using hyperbox data representations to the dynamically changing environments and streaming data. This paper aims to give a comprehensive survey of literature on hyperbox-based machine learning models. In general, according to the architecture and characteristic features of the resulting models, the existing hyperbox-based learning algorithms may be grouped into three major categories: fuzzy min-max neural networks, hyperbox-based hybrid models, and other algorithms based on hyperbox representations. Within each of these groups, this paper shows a brief description of the structure of models, associated learning algorithms, and an analysis of their advantages and drawbacks. Main applications of these hyperbox-based models to the real-world problems are also described in this paper. Finally, we discuss some open problems and identify potential future research directions in this field.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: