Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Effective Multi-Resolution Hierarchical Granular Representation based Classifier using General Fuzzy Min-Max Neural Network (1905.12170v3)

Published 29 May 2019 in cs.LG and stat.ML

Abstract: Motivated by the practical demands for simplification of data towards being consistent with human thinking and problem solving as well as tolerance of uncertainty, information granules are becoming important entities in data processing at different levels of data abstraction. This paper proposes a method to construct classifiers from multi-resolution hierarchical granular representations (MRHGRC) using hyperbox fuzzy sets. The proposed approach forms a series of granular inferences hierarchically through many levels of abstraction. An attractive characteristic of our classifier is that it can maintain relatively high accuracy at a low degree of granularity based on reusing the knowledge learned from lower levels of abstraction. In addition, our approach can reduce the data size significantly as well as handling the uncertainty and incompleteness associated with data in real-world applications. The construction process of the classifier consists of two phases. The first phase is to formulate the model at the greatest level of granularity, while the later stage aims to reduce the complexity of the constructed model and deduce it from data at higher abstraction levels. Experimental outcomes conducted comprehensively on both synthetic and real datasets indicated the efficiency of our method in terms of training time and predictive performance in comparison to other types of fuzzy min-max neural networks and common machine learning algorithms.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.