Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stop-and-Go: Exploring Backdoor Attacks on Deep Reinforcement Learning-based Traffic Congestion Control Systems (2003.07859v4)

Published 17 Mar 2020 in cs.CR, cs.LG, cs.SY, eess.SY, physics.soc-ph, and stat.ML

Abstract: Recent work has shown that the introduction of autonomous vehicles (AVs) in traffic could help reduce traffic jams. Deep reinforcement learning methods demonstrate good performance in complex control problems, including autonomous vehicle control, and have been used in state-of-the-art AV controllers. However, deep neural networks (DNNs) render automated driving vulnerable to machine learning-based attacks. In this work, we explore the backdooring/trojanning of DRL-based AV controllers. We develop a trigger design methodology that is based on well-established principles of traffic physics. The malicious actions include vehicle deceleration and acceleration to cause stop-and-go traffic waves to emerge (congestion attacks) or AV acceleration resulting in the AV crashing into the vehicle in front (insurance attack). We test our attack on single-lane and two-lane circuits. Our experimental results show that the backdoored model does not compromise normal operation performance, with the maximum decrease in cumulative rewards being 1%. Still, it can be maliciously activated to cause a crash or congestion when the corresponding triggers appear.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.