Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Flow: A Modular Learning Framework for Mixed Autonomy Traffic (1710.05465v4)

Published 16 Oct 2017 in cs.AI, cs.RO, and cs.SY

Abstract: The rapid development of autonomous vehicles (AVs) holds vast potential for transportation systems through improved safety, efficiency, and access to mobility. However, the progression of these impacts, as AVs are adopted, is not well understood. Numerous technical challenges arise from the goal of analyzing the partial adoption of autonomy: partial control and observation, multi-vehicle interactions, and the sheer variety of scenarios represented by real-world networks. To shed light into near-term AV impacts, this article studies the suitability of deep reinforcement learning (RL) for overcoming these challenges in a low AV-adoption regime. A modular learning framework is presented, which leverages deep RL to address complex traffic dynamics. Modules are composed to capture common traffic phenomena (stop-and-go traffic jams, lane changing, intersections). Learned control laws are found to improve upon human driving performance, in terms of system-level velocity, by up to 57% with only 4-7% adoption of AVs. Furthermore, in single-lane traffic, a small neural network control law with only local observation is found to eliminate stop-and-go traffic - surpassing all known model-based controllers to achieve near-optimal performance - and generalize to out-of-distribution traffic densities.

Citations (137)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.