Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Physical Backdoor Attacks to Lane Detection Systems in Autonomous Driving (2203.00858v2)

Published 2 Mar 2022 in cs.CV

Abstract: Modern autonomous vehicles adopt state-of-the-art DNN models to interpret the sensor data and perceive the environment. However, DNN models are vulnerable to different types of adversarial attacks, which pose significant risks to the security and safety of the vehicles and passengers. One prominent threat is the backdoor attack, where the adversary can compromise the DNN model by poisoning the training samples. Although lots of effort has been devoted to the investigation of the backdoor attack to conventional computer vision tasks, its practicality and applicability to the autonomous driving scenario is rarely explored, especially in the physical world. In this paper, we target the lane detection system, which is an indispensable module for many autonomous driving tasks, e.g., navigation, lane switching. We design and realize the first physical backdoor attacks to such system. Our attacks are comprehensively effective against different types of lane detection algorithms. Specifically, we introduce two attack methodologies (poison-annotation and clean-annotation) to generate poisoned samples. With those samples, the trained lane detection model will be infected with the backdoor, and can be activated by common objects (e.g., traffic cones) to make wrong detections, leading the vehicle to drive off the road or onto the opposite lane. Extensive evaluations on public datasets and physical autonomous vehicles demonstrate that our backdoor attacks are effective, stealthy and robust against various defense solutions. Our codes and experimental videos can be found in https://sites.google.com/view/lane-detection-attack/lda.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.