Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Invertible DNN-based nonlinear time-frequency transform for speech enhancement (1911.10764v2)

Published 25 Nov 2019 in eess.AS and cs.SD

Abstract: We propose an end-to-end speech enhancement method with trainable time-frequency~(T-F) transform based on invertible deep neural network~(DNN). The resent development of speech enhancement is brought by using DNN. The ordinary DNN-based speech enhancement employs T-F transform, typically the short-time Fourier transform~(STFT), and estimates a T-F mask using DNN. On the other hand, some methods have considered end-to-end networks which directly estimate the enhanced signals without T-F transform. While end-to-end methods have shown promising results, they are black boxes and hard to understand. Therefore, some end-to-end methods used a DNN to learn the linear T-F transform which is much easier to understand. However, the learned transform may not have a property important for ordinary signal processing. In this paper, as the important property of the T-F transform, perfect reconstruction is considered. An invertible nonlinear T-F transform is constructed by DNNs and learned from data so that the obtained transform is perfectly reconstructing filterbank.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.