Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring the Best Loss Function for DNN-Based Low-latency Speech Enhancement with Temporal Convolutional Networks (2005.11611v3)

Published 23 May 2020 in eess.AS and cs.SD

Abstract: Recently, deep neural networks (DNNs) have been successfully used for speech enhancement, and DNN-based speech enhancement is becoming an attractive research area. While time-frequency masking based on the short-time Fourier transform (STFT) has been widely used for DNN-based speech enhancement over the last years, time domain methods such as the time-domain audio separation network (TasNet) have also been proposed. The most suitable method depends on the scale of the dataset and the type of task. In this paper, we explore the best speech enhancement algorithm on two different datasets. We propose a STFT-based method and a loss function using problem-agnostic speech encoder (PASE) features to improve subjective quality for the smaller dataset. Our proposed methods are effective on the Voice Bank + DEMAND dataset and compare favorably to other state-of-the-art methods. We also implement a low-latency version of TasNet, which we submitted to the DNS Challenge and made public by open-sourcing it. Our model achieves excellent performance on the DNS Challenge dataset.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube