Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Masks Fusion with Multi-Target Learning For Speech Enhancement (2109.11164v2)

Published 23 Sep 2021 in eess.AS

Abstract: Recently, deep neural network (DNN) based time-frequency (T-F) mask estimation has shown remarkable effectiveness for speech enhancement. Typically, a single T-F mask is first estimated based on DNN and then used to mask the spectrogram of noisy speech in an order to suppress the noise. This work proposes a multi-mask fusion method for speech enhancement. It simultaneously estimates two complementary masks, e.g., ideal ratio mask (IRM) and target binary mask (TBM), and then fuse them to obtain a refined mask for speech enhancement. The advantage of the new method is twofold. First, simultaneously estimating multiple complementary masks brings benefit endowed by multi-target learning. Second, multi-mask fusion can exploit the complementarity of multiple masks to boost the performance of speech enhancement. Experimental results show that the proposed method can achieve significant PESQ improvement and reduce the recognition error rate of back-end over traditional masking-based methods. Code is available at https://github.com/lc-zhou/mask-fusion.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.