Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Efficient Feature Selection techniques for Sentiment Analysis (1911.00288v2)

Published 1 Nov 2019 in cs.CL and cs.LG

Abstract: Sentiment analysis is a domain of study that focuses on identifying and classifying the ideas expressed in the form of text into positive, negative and neutral polarities. Feature selection is a crucial process in machine learning. In this paper, we aim to study the performance of different feature selection techniques for sentiment analysis. Term Frequency Inverse Document Frequency (TF-IDF) is used as the feature extraction technique for creating feature vocabulary. Various Feature Selection (FS) techniques are experimented to select the best set of features from feature vocabulary. The selected features are trained using different machine learning classifiers Logistic Regression (LR), Support Vector Machines (SVM), Decision Tree (DT) and Naive Bayes (NB). Ensemble techniques Bagging and Random Subspace are applied on classifiers to enhance the performance on sentiment analysis. We show that, when the best FS techniques are trained using ensemble methods achieve remarkable results on sentiment analysis. We also compare the performance of FS methods trained using Bagging, Random Subspace with varied neural network architectures. We show that FS techniques trained using ensemble classifiers outperform neural networks requiring significantly less training time and parameters thereby eliminating the need for extensive hyper-parameter tuning.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.