Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Subjective Sentiment Analysis for Arabic Newswire Comments (1911.03776v1)

Published 9 Nov 2019 in cs.CL

Abstract: This paper presents an approach based on supervised machine learning methods to discriminate between positive, negative and neutral Arabic reviews in online newswire. The corpus is labeled for subjectivity and sentiment analysis (SSA) at the sentence-level. The model uses both count and TF-IDF representations and apply six machine learning algorithms; Multinomial Naive Bayes, Support Vector Machines (SVM), Random Forest, Logistic Regression, Multi-layer perceptron and k-nearest neighbors using uni-grams, bi-grams features. With the goal of extracting users sentiment from written text. Experimental results showed that n-gram features could substantially improve performance; and showed that the Multinomial Naive Bayes approach is the most accurate in predicting topic polarity. Best results were achieved using count vectors trained by combination of word-based uni-grams and bi-grams with an overall accuracy of 85.57% over two classes and 65.64% over three classes.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.