Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

TF-IDFC-RF: A Novel Supervised Term Weighting Scheme (2003.07193v2)

Published 12 Mar 2020 in cs.IR, cs.LG, and stat.ML

Abstract: Sentiment Analysis is a branch of Affective Computing usually considered a binary classification task. In this line of reasoning, Sentiment Analysis can be applied in several contexts to classify the attitude expressed in text samples, for example, movie reviews, sarcasm, among others. A common approach to represent text samples is the use of the Vector Space Model to compute numerical feature vectors consisting of the weight of terms. The most popular term weighting scheme is TF-IDF (Term Frequency - Inverse Document Frequency). It is an Unsupervised Weighting Scheme (UWS) since it does not consider the class information in the weighting of terms. Apart from that, there are Supervised Weighting Schemes (SWS), which consider the class information on term weighting calculation. Several SWS have been recently proposed, demonstrating better results than TF-IDF. In this scenario, this work presents a comparative study on different term weighting schemes and proposes a novel supervised term weighting scheme, named as TF-IDFC-RF (Term Frequency - Inverse Document Frequency in Class - Relevance Frequency). The effectiveness of TF-IDFC-RF is validated with SVM (Support Vector Machine) and NB (Naive Bayes) classifiers on four commonly used Sentiment Analysis datasets. TF-IDFC-RF shows promising results, outperforming all other weighting schemes on two datasets.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.