Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performing Deep Recurrent Double Q-Learning for Atari Games (1908.06040v2)

Published 16 Aug 2019 in cs.LG, cs.AI, cs.NE, and stat.ML

Abstract: Currently, many applications in Machine Learning are based on define new models to extract more information about data, In this case Deep Reinforcement Learning with the most common application in video games like Atari, Mario, and others causes an impact in how to computers can learning by himself with only information called rewards obtained from any action. There is a lot of algorithms modeled and implemented based on Deep Recurrent Q-Learning proposed by DeepMind used in AlphaZero and Go. In this document, We proposed Deep Recurrent Double Q-Learning that is an implementation of Deep Reinforcement Learning using Double Q-Learning algorithms and Recurrent Networks like LSTM and DRQN.

Citations (19)

Summary

We haven't generated a summary for this paper yet.