Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Improving Deep Reinforcement Learning for POMDPs (1704.07978v6)

Published 26 Apr 2017 in cs.LG

Abstract: Deep Reinforcement Learning (RL) recently emerged as one of the most competitive approaches for learning in sequential decision making problems with fully observable environments, e.g., computer Go. However, very little work has been done in deep RL to handle partially observable environments. We propose a new architecture called Action-specific Deep Recurrent Q-Network (ADRQN) to enhance learning performance in partially observable domains. Actions are encoded by a fully connected layer and coupled with a convolutional observation to form an action-observation pair. The time series of action-observation pairs are then integrated by an LSTM layer that learns latent states based on which a fully connected layer computes Q-values as in conventional Deep Q-Networks (DQNs). We demonstrate the effectiveness of our new architecture in several partially observable domains, including flickering Atari games.

Citations (120)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com