Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Model-based clustering in networks with Stochastic Community Finding (1205.1997v2)

Published 9 May 2012 in stat.CO, cs.SI, and physics.soc-ph

Abstract: In the model-based clustering of networks, blockmodelling may be used to identify roles in the network. We identify a special case of the Stochastic Block Model (SBM) where we constrain the cluster-cluster interactions such that the density inside the clusters of nodes is expected to be greater than the density between clusters. This corresponds to the intuition behind community-finding methods, where nodes tend to clustered together if they link to each other. We call this model Stochastic Community Finding (SCF) and present an efficient MCMC algorithm which can cluster the nodes, given the network. The algorithm is evaluated on synthetic data and is applied to a social network of interactions at a karate club and at a monastery, demonstrating how the SCF finds the 'ground truth' clustering where sometimes the SBM does not. The SCF is only one possible form of constraint or specialization that may be applied to the SBM. In a more supervised context, it may be appropriate to use other specializations to guide the SBM.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.