Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Relative Density and Exact Recovery in Heterogeneous Stochastic Block Models (1512.04937v1)

Published 15 Dec 2015 in stat.ML

Abstract: The Stochastic Block Model (SBM) is a widely used random graph model for networks with communities. Despite the recent burst of interest in recovering communities in the SBM from statistical and computational points of view, there are still gaps in understanding the fundamental information theoretic and computational limits of recovery. In this paper, we consider the SBM in its full generality, where there is no restriction on the number and sizes of communities or how they grow with the number of nodes, as well as on the connection probabilities inside or across communities. This generality allows us to move past the artifacts of homogenous SBM, and understand the right parameters (such as the relative densities of communities) that define the various recovery thresholds. We outline the implications of our generalizations via a set of illustrative examples. For instance, $\log n$ is considered to be the standard lower bound on the cluster size for exact recovery via convex methods, for homogenous SBM. We show that it is possible, in the right circumstances (when sizes are spread and the smaller the cluster, the denser), to recover very small clusters (up to $\sqrt{\log n}$ size), if there are just a few of them (at most polylogarithmic in $n$).

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.