Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convexified Modularity Maximization for Degree-corrected Stochastic Block Models (1512.08425v2)

Published 28 Dec 2015 in math.ST, cs.LG, cs.SI, stat.ML, and stat.TH

Abstract: The stochastic block model (SBM) is a popular framework for studying community detection in networks. This model is limited by the assumption that all nodes in the same community are statistically equivalent and have equal expected degrees. The degree-corrected stochastic block model (DCSBM) is a natural extension of SBM that allows for degree heterogeneity within communities. This paper proposes a convexified modularity maximization approach for estimating the hidden communities under DCSBM. Our approach is based on a convex programming relaxation of the classical (generalized) modularity maximization formulation, followed by a novel doubly-weighted $ \ell_1 $-norm $ k $-median procedure. We establish non-asymptotic theoretical guarantees for both approximate clustering and perfect clustering. Our approximate clustering results are insensitive to the minimum degree, and hold even in sparse regime with bounded average degrees. In the special case of SBM, these theoretical results match the best-known performance guarantees of computationally feasible algorithms. Numerically, we provide an efficient implementation of our algorithm, which is applied to both synthetic and real-world networks. Experiment results show that our method enjoys competitive performance compared to the state of the art in the literature.

Citations (111)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.