Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Simply Trainable Nearest Neighbour Machine Translation with GPU Inference (2407.19965v2)

Published 29 Jul 2024 in cs.AI

Abstract: Nearest neighbor machine translation is a successful approach for fast domain adaption, which interpolates the pre-trained transformers with domain-specific token-level k-nearest-neighbor (kNN) retrieval without retraining. Despite kNN MT's success, searching large reference corpus and fixed interpolation between the kNN and pre-trained model led to computational complexity and translation quality challenges. Among other papers, Dai et al. proposed methods to obtain a small number of reference samples dynamically for which they introduced a distance-aware interpolation method using an equation that includes free parameters. This paper proposes a simply trainable nearest neighbor machine translation and carry out inference experiments on GPU. Similar to Dai et al., we first adaptively construct a small datastore for each input sentence. Second, we train a single-layer network for the interpolation coefficient between the knnMT and pre-trained result to automatically interpolate in different domains. Experimental results on different domains show that our proposed method either improves or sometimes maintain the translation quality of methods in Dai et al. while being automatic. In addition, our GPU inference results demonstrate that knnMT can be integrated into GPUs with a drop of only 5% in terms of speed.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com