Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Better Datastore, Better Translation: Generating Datastores from Pre-Trained Models for Nearest Neural Machine Translation (2212.08822v1)

Published 17 Dec 2022 in cs.CL

Abstract: Nearest Neighbor Machine Translation (kNNMT) is a simple and effective method of augmenting neural machine translation (NMT) with a token-level nearest neighbor retrieval mechanism. The effectiveness of kNNMT directly depends on the quality of retrieved neighbors. However, original kNNMT builds datastores based on representations from NMT models, which would result in poor retrieval accuracy when NMT models are not good enough, leading to sub-optimal translation performance. In this paper, we propose PRED, a framework that leverages Pre-trained models for Datastores in kNN-MT. Better representations from pre-trained models allow us to build datastores of better quality. We also design a novel contrastive alignment objective to mitigate the representation gap between the NMT model and pre-trained models, enabling the NMT model to retrieve from better datastores. We conduct extensive experiments on both bilingual and multilingual translation benchmarks, including WMT17 English $\leftrightarrow$ Chinese, WMT14 English $\leftrightarrow$ German, IWSLT14 German $\leftrightarrow$ English, and IWSLT14 multilingual datasets. Empirical results demonstrate the effectiveness of PRED.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube