Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Impact of LoRA Adapters for LLMs on Clinical NLP Classification Under Data Limitations (2407.19299v2)

Published 27 Jul 2024 in cs.CL and eess.SP

Abstract: Fine-tuning LLMs for clinical NLP poses significant challenges due to the domain gap and limited data availability. This study investigates the effectiveness of various adapter techniques, equivalent to Low-Rank Adaptation (LoRA), for fine-tuning LLMs in a resource-constrained hospital environment. We experimented with four structures-Adapter, Lightweight, TinyAttention, and Gated Residual Network (GRN)-as final layers for clinical notes classification. We fine-tuned biomedical pre-trained models, including CamemBERT-bio, AliBERT, and DrBERT, alongside two Transformer-based models. Our extensive experimental results indicate that i) employing adapter structures does not yield significant improvements in fine-tuning biomedical pre-trained LLMs, and ii) simpler Transformer-based models, trained from scratch, perform better under resource constraints. Among the adapter structures, GRN demonstrated superior performance with accuracy, precision, recall, and an F1 score of 0.88. Moreover, the total training time for LLMs exceeded 1000 hours, compared to under 6 hours for simpler transformer-based models, highlighting that LLMs are more suitable for environments with extensive computational resources and larger datasets. Consequently, this study demonstrates that simpler Transformer-based models can be effectively trained from scratch, providing a viable solution for clinical NLP tasks in low-resource environments with limited data availability. By identifying the GRN as the most effective adapter structure, we offer a practical approach to enhance clinical note classification without requiring extensive computational resources.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets