Papers
Topics
Authors
Recent
2000 character limit reached

Learning Unlabeled Clients Divergence for Federated Semi-Supervised Learning via Anchor Model Aggregation (2407.10327v2)

Published 14 Jul 2024 in cs.LG, cs.AI, and cs.CV

Abstract: Federated semi-supervised learning (FedSemi) refers to scenarios where there may be clients with fully labeled data, clients with partially labeled, and even fully unlabeled clients while preserving data privacy. However, challenges arise from client drift due to undefined heterogeneous class distributions and erroneous pseudo-labels. Existing FedSemi methods typically fail to aggregate models from unlabeled clients due to their inherent unreliability, thus overlooking unique information from their heterogeneous data distribution, leading to sub-optimal results. In this paper, we enable unlabeled client aggregation through SemiAnAgg, a novel Semi-supervised Anchor-Based federated Aggregation. SemiAnAgg learns unlabeled client contributions via an anchor model, effectively harnessing their informative value. Our key idea is that by feeding local client data to the same global model and the same consistently initialized anchor model (i.e., random model), we can measure the importance of each unlabeled client accordingly. Extensive experiments demonstrate that SemiAnAgg achieves new state-of-the-art results on four widely used FedSemi benchmarks, leading to substantial performance improvements: a 9% increase in accuracy on CIFAR-100 and a 7.6% improvement in recall on the medical dataset ISIC-18, compared with prior state-of-the-art. Code is available at: https://github.com/xmed-lab/SemiAnAgg.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com