Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dual Class-Aware Contrastive Federated Semi-Supervised Learning (2211.08914v2)

Published 16 Nov 2022 in cs.LG

Abstract: Federated semi-supervised learning (FSSL), facilitates labeled clients and unlabeled clients jointly training a global model without sharing private data. Existing FSSL methods predominantly employ pseudo-labeling and consistency regularization to exploit the knowledge of unlabeled data, achieving notable success in raw data utilization. However, these training processes are hindered by large deviations between uploaded local models of labeled and unlabeled clients, as well as confirmation bias introduced by noisy pseudo-labels, both of which negatively affect the global model's performance. In this paper, we present a novel FSSL method called Dual Class-aware Contrastive Federated Semi-Supervised Learning (DCCFSSL). This method accounts for both the local class-aware distribution of each client's data and the global class-aware distribution of all clients' data within the feature space. By implementing a dual class-aware contrastive module, DCCFSSL establishes a unified training objective for different clients to tackle large deviations and incorporates contrastive information in the feature space to mitigate confirmation bias. Moreover, DCCFSSL introduces an authentication-reweighted aggregation technique to improve the server's aggregation robustness. Our comprehensive experiments show that DCCFSSL outperforms current state-of-the-art methods on three benchmark datasets and surpasses the FedAvg with relabeled unlabeled clients on CIFAR-10, CIFAR-100, and STL-10 datasets. To our knowledge, we are the first to present an FSSL method that utilizes only 10\% labeled clients, while still achieving superior performance compared to standard federated supervised learning, which uses all clients with labeled data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube