Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Impact of Network Topology on Byzantine Resilience in Decentralized Federated Learning (2407.05141v1)

Published 6 Jul 2024 in cs.LG and cs.DC

Abstract: Federated learning (FL) enables a collaborative environment for training machine learning models without sharing training data between users. This is typically achieved by aggregating model gradients on a central server. Decentralized federated learning is a rising paradigm that enables users to collaboratively train machine learning models in a peer-to-peer manner, without the need for a central aggregation server. However, before applying decentralized FL in real-world use training environments, nodes that deviate from the FL process (Byzantine nodes) must be considered when selecting an aggregation function. Recent research has focused on Byzantine-robust aggregation for client-server or fully connected networks, but has not yet evaluated such aggregation schemes for complex topologies possible with decentralized FL. Thus, the need for empirical evidence of Byzantine robustness in differing network topologies is evident. This work investigates the effects of state-of-the-art Byzantine-robust aggregation methods in complex, large-scale network structures. We find that state-of-the-art Byzantine robust aggregation strategies are not resilient within large non-fully connected networks. As such, our findings point the field towards the development of topology-aware aggregation schemes, especially necessary within the context of large scale real-world deployment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube