Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

RobustFed: A Truth Inference Approach for Robust Federated Learning (2107.08402v1)

Published 18 Jul 2021 in cs.LG, cs.AI, and cs.DC

Abstract: Federated learning is a prominent framework that enables clients (e.g., mobile devices or organizations) to train a collaboratively global model under a central server's orchestration while keeping local training datasets' privacy. However, the aggregation step in federated learning is vulnerable to adversarial attacks as the central server cannot manage clients' behavior. Therefore, the global model's performance and convergence of the training process will be affected under such attacks.To mitigate this vulnerability issue, we propose a novel robust aggregation algorithm inspired by the truth inference methods in crowdsourcing via incorporating the worker's reliability into aggregation. We evaluate our solution on three real-world datasets with a variety of machine learning models. Experimental results show that our solution ensures robust federated learning and is resilient to various types of attacks, including noisy data attacks, Byzantine attacks, and label flipping attacks.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.