Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Better by Default: Strong Pre-Tuned MLPs and Boosted Trees on Tabular Data (2407.04491v3)

Published 5 Jul 2024 in cs.LG

Abstract: For classification and regression on tabular data, the dominance of gradient-boosted decision trees (GBDTs) has recently been challenged by often much slower deep learning methods with extensive hyperparameter tuning. We address this discrepancy by introducing (a) RealMLP, an improved multilayer perceptron (MLP), and (b) strong meta-tuned default parameters for GBDTs and RealMLP. We tune RealMLP and the default parameters on a meta-train benchmark with 118 datasets and compare them to hyperparameter-optimized versions on a disjoint meta-test benchmark with 90 datasets, as well as the GBDT-friendly benchmark by Grinsztajn et al. (2022). Our benchmark results on medium-to-large tabular datasets (1K--500K samples) show that RealMLP offers a favorable time-accuracy tradeoff compared to other neural baselines and is competitive with GBDTs in terms of benchmark scores. Moreover, a combination of RealMLP and GBDTs with improved default parameters can achieve excellent results without hyperparameter tuning. Finally, we demonstrate that some of RealMLP's improvements can also considerably improve the performance of TabR with default parameters.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.