Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Team up GBDTs and DNNs: Advancing Efficient and Effective Tabular Prediction with Tree-hybrid MLPs (2407.09790v1)

Published 13 Jul 2024 in cs.LG

Abstract: Tabular datasets play a crucial role in various applications. Thus, developing efficient, effective, and widely compatible prediction algorithms for tabular data is important. Currently, two prominent model types, Gradient Boosted Decision Trees (GBDTs) and Deep Neural Networks (DNNs), have demonstrated performance advantages on distinct tabular prediction tasks. However, selecting an effective model for a specific tabular dataset is challenging, often demanding time-consuming hyperparameter tuning. To address this model selection dilemma, this paper proposes a new framework that amalgamates the advantages of both GBDTs and DNNs, resulting in a DNN algorithm that is as efficient as GBDTs and is competitively effective regardless of dataset preferences for GBDTs or DNNs. Our idea is rooted in an observation that deep learning (DL) offers a larger parameter space that can represent a well-performing GBDT model, yet the current back-propagation optimizer struggles to efficiently discover such optimal functionality. On the other hand, during GBDT development, hard tree pruning, entropy-driven feature gate, and model ensemble have proved to be more adaptable to tabular data. By combining these key components, we present a Tree-hybrid simple MLP (T-MLP). In our framework, a tensorized, rapidly trained GBDT feature gate, a DNN architecture pruning approach, as well as a vanilla back-propagation optimizer collaboratively train a randomly initialized MLP model. Comprehensive experiments show that T-MLP is competitive with extensively tuned DNNs and GBDTs in their dominating tabular benchmarks (88 datasets) respectively, all achieved with compact model storage and significantly reduced training duration.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.