Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Micro-expression recognition based on depth map to point cloud (2406.07918v1)

Published 12 Jun 2024 in eess.IV

Abstract: Micro-expressions are nonverbal facial expressions that reveal the covert emotions of individuals, making the micro-expression recognition task receive widespread attention. However, the micro-expression recognition task is challenging due to the subtle facial motion and brevity in duration. Many 2D image-based methods have been developed in recent years to recognize MEs effectively, but, these approaches are restricted by facial texture information and are susceptible to environmental factors, such as lighting. Conversely, depth information can effectively represent motion information related to facial structure changes and is not affected by lighting. Motion information derived from facial structures can describe motion features that pixel textures cannot delineate. We proposed a network for micro-expression recognition based on facial depth information, and our experiments have demonstrated the crucial role of depth maps in the micro-expression recognition task. Initially, we transform the depth map into a point cloud and obtain the motion information for each point by aligning the initiating frame with the apex frame and performing a differential operation. Subsequently, we adjusted all point cloud motion feature input dimensions and used them as inputs for multiple point cloud networks to assess the efficacy of this representation. PointNet++ was chosen as the ultimate outcome for micro-expression recognition due to its superior performance. Our experiments show that our proposed method significantly outperforms the existing deep learning methods, including the baseline, on the $CAS(ME)3$ dataset, which includes depth information.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.