Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Objective Micro-Facial Movement Detection Using FACS-Based Regions and Baseline Evaluation (1612.05038v1)

Published 15 Dec 2016 in cs.CV

Abstract: Micro-facial expressions are regarded as an important human behavioural event that can highlight emotional deception. Spotting these movements is difficult for humans and machines, however research into using computer vision to detect subtle facial expressions is growing in popularity. This paper proposes an individualised baseline micro-movement detection method using 3D Histogram of Oriented Gradients (3D HOG) temporal difference method. We define a face template consisting of 26 regions based on the Facial Action Coding System (FACS). We extract the temporal features of each region using 3D HOG. Then, we use Chi-square distance to find subtle facial motion in the local regions. Finally, an automatic peak detector is used to detect micro-movements above the newly proposed adaptive baseline threshold. The performance is validated on two FACS coded datasets: SAMM and CASME II. This objective method focuses on the movement of the 26 face regions. When comparing with the ground truth, the best result was an AUC of 0.7512 and 0.7261 on SAMM and CASME II, respectively. The results show that 3D HOG outperformed for micro-movement detection, compared to state-of-the-art feature representations: Local Binary Patterns in Three Orthogonal Planes and Histograms of Oriented Optical Flow.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.