Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Small Scale Data-Free Knowledge Distillation (2406.07876v1)

Published 12 Jun 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Data-free knowledge distillation is able to utilize the knowledge learned by a large teacher network to augment the training of a smaller student network without accessing the original training data, avoiding privacy, security, and proprietary risks in real applications. In this line of research, existing methods typically follow an inversion-and-distillation paradigm in which a generative adversarial network on-the-fly trained with the guidance of the pre-trained teacher network is used to synthesize a large-scale sample set for knowledge distillation. In this paper, we reexamine this common data-free knowledge distillation paradigm, showing that there is considerable room to improve the overall training efficiency through a lens of ``small-scale inverted data for knowledge distillation". In light of three empirical observations indicating the importance of how to balance class distributions in terms of synthetic sample diversity and difficulty during both data inversion and distillation processes, we propose Small Scale Data-free Knowledge Distillation SSD-KD. In formulation, SSD-KD introduces a modulating function to balance synthetic samples and a priority sampling function to select proper samples, facilitated by a dynamic replay buffer and a reinforcement learning strategy. As a result, SSD-KD can perform distillation training conditioned on an extremely small scale of synthetic samples (e.g., 10X less than the original training data scale), making the overall training efficiency one or two orders of magnitude faster than many mainstream methods while retaining superior or competitive model performance, as demonstrated on popular image classification and semantic segmentation benchmarks. The code is available at https://github.com/OSVAI/SSD-KD.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.