Papers
Topics
Authors
Recent
2000 character limit reached

Data-Free Knowledge Distillation with Soft Targeted Transfer Set Synthesis (2104.04868v1)

Published 10 Apr 2021 in cs.LG

Abstract: Knowledge distillation (KD) has proved to be an effective approach for deep neural network compression, which learns a compact network (student) by transferring the knowledge from a pre-trained, over-parameterized network (teacher). In traditional KD, the transferred knowledge is usually obtained by feeding training samples to the teacher network to obtain the class probabilities. However, the original training dataset is not always available due to storage costs or privacy issues. In this study, we propose a novel data-free KD approach by modeling the intermediate feature space of the teacher with a multivariate normal distribution and leveraging the soft targeted labels generated by the distribution to synthesize pseudo samples as the transfer set. Several student networks trained with these synthesized transfer sets present competitive performance compared to the networks trained with the original training set and other data-free KD approaches.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.