Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor (2406.02266v1)

Published 4 Jun 2024 in cs.CL

Abstract: Despite the prevalence of retrieval-augmented LLMs (RALMs), the seamless integration of these models with retrieval mechanisms to enhance performance in document-based tasks remains challenging. While some post-retrieval processing Retrieval-Augmented Generation (RAG) methods have achieved success, most still lack the ability to distinguish pertinent from extraneous information, leading to potential inconsistencies and reduced precision in the generated output, which subsequently affects the truthfulness of the LLM's responses. To address these limitations, this work proposes a novel two-stage consistency learning approach for retrieved information compression in retrieval-augmented LLMs to enhance performance. By incorporating consistency learning, the aim is to generate summaries that maintain coherence and alignment with the intended semantic representations of a teacher model while improving faithfulness to the original retrieved documents. The proposed method is empirically validated across multiple datasets, demonstrating notable enhancements in precision and efficiency for question-answering tasks. It outperforms existing baselines and showcases the synergistic effects of combining contrastive and consistency learning paradigms within the retrieval-augmented generation framework.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: