Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented Generation for Question-Answering (2406.07348v3)

Published 11 Jun 2024 in cs.LG and cs.CL

Abstract: Retrieval-Augmented Generation (RAG) has recently demonstrated the performance of LLMs in the knowledge-intensive tasks such as Question-Answering (QA). RAG expands the query context by incorporating external knowledge bases to enhance the response accuracy. However, it would be inefficient to access LLMs multiple times for each query and unreliable to retrieve all the relevant documents by a single query. We have found that even though there is low relevance between some critical documents and query, it is possible to retrieve the remaining documents by combining parts of the documents with the query. To mine the relevance, a two-stage retrieval framework called Dynamic-Relevant Retrieval-Augmented Generation (DR-RAG) is proposed to improve document retrieval recall and the accuracy of answers while maintaining efficiency. Additionally, a compact classifier is applied to two different selection strategies to determine the contribution of the retrieved documents to answering the query and retrieve the relatively relevant documents. Meanwhile, DR-RAG call the LLMs only once, which significantly improves the efficiency of the experiment. The experimental results on multi-hop QA datasets show that DR-RAG can significantly improve the accuracy of the answers and achieve new progress in QA systems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube