Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Single image super-resolution based on trainable feature matching attention network (2405.18872v1)

Published 29 May 2024 in cs.CV

Abstract: Convolutional Neural Networks (CNNs) have been widely employed for image Super-Resolution (SR) in recent years. Various techniques enhance SR performance by altering CNN structures or incorporating improved self-attention mechanisms. Interestingly, these advancements share a common trait. Instead of explicitly learning high-frequency details, they learn an implicit feature processing mode that utilizes weighted sums of a feature map's own elements for reconstruction, akin to convolution and non-local. In contrast, early dictionary-based approaches learn feature decompositions explicitly to match and rebuild Low-Resolution (LR) features. Building on this analysis, we introduce Trainable Feature Matching (TFM) to amalgamate this explicit feature learning into CNNs, augmenting their representation capabilities. Within TFM, trainable feature sets are integrated to explicitly learn features from training images through feature matching. Furthermore, we integrate non-local and channel attention into our proposed Trainable Feature Matching Attention Network (TFMAN) to further enhance SR performance. To alleviate the computational demands of non-local operations, we propose a streamlined variant called Same-size-divided Region-level Non-Local (SRNL). SRNL conducts non-local computations in parallel on blocks uniformly divided from the input feature map. The efficacy of TFM and SRNL is validated through ablation studies and module explorations. We employ a recurrent convolutional network as the backbone of our TFMAN to optimize parameter utilization. Comprehensive experiments on benchmark datasets demonstrate that TFMAN achieves superior results in most comparisons while using fewer parameters. The code is available at https://github.com/qizhou000/tfman.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: