Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Single image super-resolution based on trainable feature matching attention network (2405.18872v1)

Published 29 May 2024 in cs.CV

Abstract: Convolutional Neural Networks (CNNs) have been widely employed for image Super-Resolution (SR) in recent years. Various techniques enhance SR performance by altering CNN structures or incorporating improved self-attention mechanisms. Interestingly, these advancements share a common trait. Instead of explicitly learning high-frequency details, they learn an implicit feature processing mode that utilizes weighted sums of a feature map's own elements for reconstruction, akin to convolution and non-local. In contrast, early dictionary-based approaches learn feature decompositions explicitly to match and rebuild Low-Resolution (LR) features. Building on this analysis, we introduce Trainable Feature Matching (TFM) to amalgamate this explicit feature learning into CNNs, augmenting their representation capabilities. Within TFM, trainable feature sets are integrated to explicitly learn features from training images through feature matching. Furthermore, we integrate non-local and channel attention into our proposed Trainable Feature Matching Attention Network (TFMAN) to further enhance SR performance. To alleviate the computational demands of non-local operations, we propose a streamlined variant called Same-size-divided Region-level Non-Local (SRNL). SRNL conducts non-local computations in parallel on blocks uniformly divided from the input feature map. The efficacy of TFM and SRNL is validated through ablation studies and module explorations. We employ a recurrent convolutional network as the backbone of our TFMAN to optimize parameter utilization. Comprehensive experiments on benchmark datasets demonstrate that TFMAN achieves superior results in most comparisons while using fewer parameters. The code is available at https://github.com/qizhou000/tfman.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com