Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Structure-Preserving Image Super-resolution via Contextualized Multi-task Learning (1707.08340v1)

Published 26 Jul 2017 in cs.CV

Abstract: Single image super resolution (SR), which refers to reconstruct a higher-resolution (HR) image from the observed low-resolution (LR) image, has received substantial attention due to its tremendous application potentials. Despite the breakthroughs of recently proposed SR methods using convolutional neural networks (CNNs), their generated results usually lack of preserving structural (high-frequency) details. In this paper, regarding global boundary context and residual context as complimentary information for enhancing structural details in image restoration, we develop a contextualized multi-task learning framework to address the SR problem. Specifically, our method first extracts convolutional features from the input LR image and applies one deconvolutional module to interpolate the LR feature maps in a content-adaptive way. Then, the resulting feature maps are fed into two branched sub-networks. During the neural network training, one sub-network outputs salient image boundaries and the HR image, and the other sub-network outputs the local residual map, i.e., the residual difference between the generated HR image and ground-truth image. On several standard benchmarks (i.e., Set5, Set14 and BSD200), our extensive evaluations demonstrate the effectiveness of our SR method on achieving both higher restoration quality and computational efficiency compared with several state-of-the-art SR approaches. The source code and some SR results can be found at: http://hcp.sysu.edu.cn/structure-preserving-image-super-resolution/

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.