Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SemanticHuman-HD: High-Resolution Semantic Disentangled 3D Human Generation (2403.10166v1)

Published 15 Mar 2024 in cs.CV

Abstract: With the development of neural radiance fields and generative models, numerous methods have been proposed for learning 3D human generation from 2D images. These methods allow control over the pose of the generated 3D human and enable rendering from different viewpoints. However, none of these methods explore semantic disentanglement in human image synthesis, i.e., they can not disentangle the generation of different semantic parts, such as the body, tops, and bottoms. Furthermore, existing methods are limited to synthesize images at $5122$ resolution due to the high computational cost of neural radiance fields. To address these limitations, we introduce SemanticHuman-HD, the first method to achieve semantic disentangled human image synthesis. Notably, SemanticHuman-HD is also the first method to achieve 3D-aware image synthesis at $10242$ resolution, benefiting from our proposed 3D-aware super-resolution module. By leveraging the depth maps and semantic masks as guidance for the 3D-aware super-resolution, we significantly reduce the number of sampling points during volume rendering, thereby reducing the computational cost. Our comparative experiments demonstrate the superiority of our method. The effectiveness of each proposed component is also verified through ablation studies. Moreover, our method opens up exciting possibilities for various applications, including 3D garment generation, semantic-aware image synthesis, controllable image synthesis, and out-of-domain image synthesis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.