Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

3D-Aware Semantic-Guided Generative Model for Human Synthesis (2112.01422v2)

Published 2 Dec 2021 in cs.CV

Abstract: Generative Neural Radiance Field (GNeRF) models, which extract implicit 3D representations from 2D images, have recently been shown to produce realistic images representing rigid/semi-rigid objects, such as human faces or cars. However, they usually struggle to generate high-quality images representing non-rigid objects, such as the human body, which is of a great interest for many computer graphics applications. This paper proposes a 3D-aware Semantic-Guided Generative Model (3D-SGAN) for human image synthesis, which combines a GNeRF with a texture generator. The former learns an implicit 3D representation of the human body and outputs a set of 2D semantic segmentation masks. The latter transforms these semantic masks into a real image, adding a realistic texture to the human appearance. Without requiring additional 3D information, our model can learn 3D human representations with a photo-realistic, controllable generation. Our experiments on the DeepFashion dataset show that 3D-SGAN significantly outperforms the most recent baselines. The code is available at https://github.com/zhangqianhui/3DSGAN

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.